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Abstract. When to discharge a patient plays an important role in hospital patient flow
management and the quality of care and patient outcomes. In this work, we develop and
implement a data-integrated decision support framework to aid hospitals in managing the
delicate balance between readmission risk at discharge and ward congestion. We
formulate a large-scale Markov decision process (MDP) that integrates a personalized
readmission prediction model to dynamically prescribe both how many and which pa-
tients to discharge on each day. Because of patient heterogeneity and the fact that length of
stay is not memoryless, the MDP has the curse of dimensionality. We leverage structural
properties and an analytical solution for a special cost setting to transform the MDP into a
univariate optimization; this leads to a novel, efficient dynamic heuristic. Furthermore, for
our decision framework to be implementable in practice, we build a unified prediction
model that integrates several statistical methods and provides key inputs to the decision
framework; existing off-the-shelf readmission prediction models alone could not adequately
parametrize our decision support. Through extensive counterfactual analyses, we demon-
strate the value of our discharge decision tool over our partner hospital’s historical discharge
behavior. We also obtain generalizable insights by applying the tool to a broad range of
hospital types through a high-fidelity simulation. Last, we showcase an implementation of our
tool at our partner hospital to demonstrate broader applicability through our framework’s
plug-and-play design for integration with general hospital data systems and workflows.

Supplemental Material: The online appendices are available at https://doi.org/10.1287/opre.2020.2044.

Keywords: readmission risk • inpatient flow management • state-dependent discharge • large-scale Markov decision process (MDP) •
approximation algorithms • tool implementation

1. Introduction
A hospitalist makes many decisions that influence the
cost of an inpatient stay . . . but probably none has more
impact than “Should this patient go home today or
tomorrow?” —Cover story for American College of Phy-
sicians Hospitalist (Colwell 2014)

This paper highlights the key tradeoff in making
discharge decisions: Under the Affordable Care Act,
it is still in hospitals’ financial interest to discharge
patients as soon as possible but also to facilitate post-
discharge care and prevent 30-day readmissions. Rather
than just lowering length of stay (LOS), hospitals now
aim to optimize it at the intersection of quality and cost.
Balancing this tradeoff has broad implications for
patient flow, inpatient unit congestion, quality of
care, and postdischarge risk, impacting all care pro-
viders from small community hospitals to major teach-
ing hospitals.

Frequent overloading of inpatient units contrib-
utes to emergency department (ED) overcrowding

(Proudlove et al. 2003), denial of intensive care unit
(ICU) admission (Kim et al. 2014), cancellation of
elective surgeries (Helm et al. 2011), and higher risk of
mortality (Kuntz et al. 2014), among other conse-
quences. When inpatient units become congested,
doctors frequently discharge existing patients early (Kc
and Terwiesch 2012, 2017; Berry Jaeker and Tucker
2017). This practice alleviates overcrowding in the
ward by shifting the burden to the early discharge
patients, who may experience increased risk of
readmission, mortality, and other adverse outcomes
(Kc and Terwiesch 2009, 2012). By contrast, when
occupancy levels are low, hospitalsmay keep patients
longer (Anderson et al. 2011), which can have a
positive impact on patient outcomes (Bartel et al.
2020). The balancing act between individual dis-
charge risk and ward congestion has grown into a
major stress point in the face of recent pressures to
reduce readmissions (Kocher and Adashi 2011) while
limiting LOS, as indicated in the paper referenced
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previously and others (Frenz 2014, Frakt 2016). Hos-
pitals manage this tradeoff through ad hoc practices
that lack analytical decision support. The operations
management literature has made significant strides in
this area, althoughnew research is needed to support the
development of practical tools that can be implemented
as part of a hospital’s workflow.

In this paper, we develop a data-integrated deci-
sion support framework for managing the tradeoff
between readmission risk and inpatient crowding.
The decision support optimizes who and how many to
discharge each day based on a personalized trajectory
that predicts how readmission risk evolves over the
course of each patient’s stay in the hospital. We focus
on readmissions because it is the target area of im-
provement in our partner hospital, although the de-
cision framework is easily adapted to other types of
adverse events such as mortality and to a wide range
of hospitals. Figure 1 illustrates the two main com-
ponents of our decision support framework:

• To integrate with daily hospital operations, the
discharge decision support needs to account for pa-
tient heterogeneity and history-dependent health status
progression, which necessitates our development of a
nontraditional modeling framework and optimization
approach. To handle the curse of dimensionality, we
develop a simple, efficient, and robust heuristic by in-
tegrating general structural properties with analytical
solutions to a special cost problem.

• Implementing the decision support in practice
requires personalized prediction of each patient’s risk
trajectory from data, that is, how the probability and
timing of readmission evolves as a function of LOS. To
the best of our knowledge, no off-the-shelf tool could
be directly applied to our decision framework be-
cause of three challenges that have yet to be addressed
in a unified method (see Section 1.1). We develop a
prediction model that combines several statistical
methods and allows a seamless integration of our de-
cision support tool with existing hospital data systems.

A final product from this work is tested and imple-
mented in a partner hospital in the state of Indiana,
demonstrating the practical value of our decision
framework and providing a showcase for other hos-
pitals in need of a similar tool. Through the plug-and-
playdesignof our framework, such adischargedecision
tool can be easily adapted to a broad range of hospitals
and hospital information technology (IT) systems in a

(nearly) automated manner with some input from a
trained analyst. We summarize our contributions in
further detail in Section 1.2.

1.1. Challenges in Discharge Management
In this section, we first elaborate on how challenges
associated with discharge management impact the
day-to-day operations and patient outcomes at our
partner hospital. Through this, we illustrate the broad
challenges facing the hospital industry and demon-
strate the real need for developing analytical decision
support for inpatient discharge. We then discuss why
new research is needed to develop an implementable
tool to support daily discharge decisions.

1.1.1 DischargeOptimization. Discharge planners face
complex decisions on how many patients and whom
to discharge on a given day. Currently, hospitals
engage in adaptive discharge practices in a reactive
and ad hoc manner. For example, when our partner
hospital becomes overcrowded, a communication is
sent to all physicians asking them to discharge as
many patients as possible to free up beds, which is a
practice found in other hospitalswe have spokenwith
as well. This unstructured approach may end up
discharging too many or too few patients or dis-
charging a suboptimal group of patients. This is
highlighted by a recent empirical paper that dem-
onstrates that individual physicians lack a system
perspective and as a result react to occupancy crises
poorly (Adepoju et al. 2019).
In our study, we show that discharge decisions

must be far more nuanced to properly balance hos-
pital and patient needs; in fact, adaptive discharge
may be activated not only when occupancy is high
but also when occupancy is low: keeping the right
set of patients longer to reduce readmissions. These
decisions need to account for the risk of each indi-
vidual patient in the hospital unit and individual
patient’s risk evolution over future days in conjunc-
tion with expected future patient arrivals and current
and future occupancy levels. The inpatient arrival
day-of-week phenomenon and diverse patient char-
acteristics further complicate discharge decisions.
These subtleties necessitate a sophisticated decision
support from data-integrated analytical models that
prescribes discharge recommendations based on the
dynamic patient profiles and system status. The com-
plexities in developing such a decision support led our

Figure 1. Conceptual Diagram of Decision Support Development for Discharge Management
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partner hospital and its data analytics contractor (Lean
Care Solutions) to approach us, with the goal of more
effectively leveraging discharge timing as a powerful
tool in the readmission battle.

1.1.2. An Implementable Tool. The discharge optimi-
zation problem connects to the service rate control
literature (seemore review in Section 2). However, for
the discharge decision support to be implementable,
we find that the optimal discharge (service) rate—
output from the conventional service rate control
works—is not sufficient to inform the hospital as to
howmany andwhom todischarge for a givenmix and
volume of patients currently in the hospital unit.
Moreover, conventional models usually use memo-
ryless service time distributions and other stylized
assumptions that abstract away information that is
crucial to day-to-day dischargemanagement in practice.
As a result, new modeling efforts are needed to develop
an implementable decision framework and an appro-
priate solution algorithm.

In addition to the theoretical challenges, another
barrier for the tool to be implementable is the need
for a sufficiently accurate input to the prediction of pa-
tient readmission risk evolution as a function of LOS.
Most existing readmission prediction tools treat LOS as
an exogenous variable. Directly applying these tools by
varying LOS suffers from endogeneity (sicker patients
tend to stay longer and have a higher readmission
risk), which often leads to the incorrect conclusion that
extending LOS for an individual patient results in higher
readmission risk. In addition, the discharge decision
framework requires not only the prediction of the
readmission probability as an input but also the pre-
diction of the readmission timing, where we findmore
challenges when applying the classical Cox propor-
tional hazardmodel to predict readmission timing (see
details in Section 6). As such, we need to develop a
unified prediction method that can work with different
hospital data systems and can provide adequate pa-
rameterization of our decision support system.

1.2. Overview and Main Contributions
The main goal of this paper is to develop a novel,
implementable decision support tool to allow hos-
pitals to use discharge timing as a powerful lever to
reduce readmissions and improve patient outcomes.
This paper makes both technical and practical con-
tributions to the literature.

1. Discharge decision framework. In Section 3, we
build a large-scale Markov decision process (MDP)
based on a patient flow model with reentries. This
MDP deviates from traditional service rate control
models and accounts for personalized patient risk
trajectory and history-dependent state. It dynamically

optimizes the number of patients and specifically
who to discharge each day by balancing the tradeoff
between the individual-level cost (readmission risk)
and the system-level cost (ward congestion).
2. Analytical results and heuristic. Because of the

patient heterogeneity and the fact that patient LOS is
no longer exogeneous or memoryless, the formulated
MDP has a high-dimensional state and action space.
To overcome the curse of dimensionality, in Section 4,
we prove structural properties of the MDP showing
that discharge decisions should depend on marginal
risk among all future days, contradicting the belief in
the medical community that current absolute risk
should be the criterion for discharge. We develop
both a strong dominance and a more general weak
dominance criterion to rank patients in terms of
discharge desirability. In Section 5, we leverage a
special case of the MDP that can be solved efficiently
as a linear quadratic stochastic control problem. We
develop a novel algorithm that combines the closed-
form solutions of this special MDP with the patient
ranking to transform the originalMDP into a heuristic
univariate optimization, significantly reducing the
computational complexity.
In addition to being computationally appealing,

our algorithm provides a simple and easily inter-
pretable method for implementation, suggesting how
many patients to discharge, with the who being de-
termined directly from the ranking. Furthermore, our
algorithm integrates with the complex and data-rich
environment in hospitals by being flexible enough to
incorporate personalized risk trajectories for all pa-
tients currently in the hospital ward and a nonsta-
tionary arrival process to account for day-of-week
variability. Given the simplicity and flexibility, this
algorithm can be easily implemented in hospitals
beyond our partner hospital.
3. Risk prediction and implementation. We worked

closely with our partner hospital to test and imple-
ment our discharge decision support framework. As a
first step, in Section 6, we develop a unified prediction
model that combines several statistical methodolo-
gies to overcome the challenges mentioned in Sec-
tion 1.1. In particular, it is necessary to use an instru-
mental variable (IV) approach to correct the estimation
bias caused by endogeneity—patient severity corre-
lates with both LOS and readmission risk. Although
there is no theoretical guarantee for the IV approach,
this prediction model provides a reasonably accurate
prediction.Most important, ourpredictionmodel allowsa
direct integration of our discharge decision support with
thehospital’s IT infrastructure and providerworkflow.
Figure 2(a) shows a snapshot of the main portal

of the implemented tool from our work. The tool
displays (1) patients currently in the hospital unit
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(represented by each block), ranked with different
color codes in terms of their discharge desirability
from the dominance criterion (see Section 4), (2) dis-
charge risk curve for future possible LOS of each
patient (with past LOS and generally recommended
LOS), and (3) postdischarge readmission timing risk
curve. See Figure 2(b) for features (1) and (2), enlarged
in Online Appendix F.

4. Tool value and broader insights. During the de-
velopment of our decision support framework, we
provided performance measures and analysis for
each component (optimization and prediction) indi-
vidually for completeness and robustness. The overall
value of our integrated decision support tool is captured
in Section 7, where we measure LOS, net change in
readmissions, and positive catch rate (proportion of
actual readmissions our tool suggests intervening on)
through careful counterfactual analyses using data
from our partner hospital. To properly measure the
holistic value of our system, we use a trace-based
counterfactual that demonstrates Pareto dominance
of our heuristic policy over the historical discharge
policy in occupancy and readmissions. Importantly,
our policy properly catches more than 50% of actual
readmissions, suggesting extending their LOS. We
generalize these results to other hospitals through
high-fidelity simulation analyses in Section 7.3, show-
ing which types of hospitals gain the most benefit
from our dynamic discharge.

Remark 1. In practice, discharge decisions are com-
plicated and involve a variety of factors. We emphasize
that our tool is meant to provide analytical support for
discharge decisions. Doctors can still use their own
discretion in discharging patients according to the in-
dividual patient’s condition and needs. Our tool is
flexible to accommodate such deviations and can up-
date the recommendations after incorporating the ac-
tual decisions; a more detailed discussion is presented
in Section 8.

2. Literature Review
We review three streams of literature relevant to
our paper.

2.1. Empirical Evidence
A rich body of empirical research has provided evi-
dence that hospitals tend to use discharge decisions to
reduce inpatient unit congestion (Kc and Terwiesch
(2012, 2017; Berry Jaeker and Tucker 2017). Long and
Mathews (2017) show that ICU occupancy impacts
the less essential boarding time but not the medically
necessary LOS. Although early discharge can alle-
viate congestion and increase the chance of admission
for future patients, it compromises patient outcomes.
Using a large data set on patients with congestive
heart failure, Oh et al. (2017) find inpatient stays that
are shorter than the Centers for Medicare and Med-
icaid Services–suggested LOS are likely to exhibit a
1.1% greater risk of readmission. Kc and Terwiesch
(2009, 2012) find that patients discharged early ex-
hibit increased risk of readmission, mortality, and
other adverse outcomes. The medical literature has
discovered similar findings between LOS and patient
outcomes (Heggestad 2002, Kuo and Goodwin 2011).
By contrast, Bartel et al. (2020) show that keeping a
patient one extra day can reduce mortality risk by
nearly 6%. Oh et al. (2017) and Carey (2015) suggest
that keeping patients longer can significantly reduce
hospital costs. Our paper is largelymotivated by these
empirical studies, although it is important to differ-
entiate our work from them because our focus in
Section 6 is on dynamic, personalized prediction of
readmission risk evolution over a patient’s hospital
stay, which is an important component of our inte-
grated discharge optimization tool.

2.2. State-Dependent Discharge Optimization
Our modeling and discharge decision analysis con-
nects with the literature on optimal service rate control.

Figure 2. Screenshot of the Discharge Decision Support Web Portal Implemented in Our Partner Hospital

Notes. The first plot (a) shows the screenshot of the main portal. The second plot (b) shows the individual risk prediction tab.
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Within this area, several papers specifically study dis-
charges in the hospital. Berk and Moinzadeh (1998)
provide an early paper to study the tradeoff between
discharge risk and inpatient occupancy. The authors
model patient care for a homogeneous population
in two stages, where stage 1 is not dischargable and
stage 2 is a less critical stage in which early discharge
can be exercised. They focus on steady-state perfor-
mance analysis under two fixed policies (with and
without early discharge), which is different from our
focus on decision support. Crawford et al. (2014)
develop a simulation study on the impact of inpa-
tient discharge policies on ED congestion and read-
mission, where they evaluate the performance of
three fixed discharge policies. Armony and Yom-
Tov (2018) study discharge management for hema-
tology patients who have both risk of infection and
risk of mortality after chemotherapy. They leverage
fluid approximations and perform steady-state analy-
sis to identify discharge thresholds that minimize the
combinedpatients’ infection andmortality risks under
capacity constraints.

Chan et al. (2012) consider the scenariowhere a new
patient arrives to a full ICU, and doctors must decide
which patient to discharge to free a bed. Our discrete
timemodel is more natural for the inpatient discharge
setting because discharges are usually processed once a
day during rounds. Hence, we determine both which
patients and how many patients to discharge, consid-
ering patient risk trajectories and current and future
occupancy. We also track how long a patient has
stayed, linking this to a LOS-dependent risk from our
prediction model. Ouyang et al. (2020) consider the
joint decision of ICU admission and discharge deci-
sions. The decision maker decides whether to admit
an arriving patient to the ICU or to the general ward
and also who to discharge early if a patient needs to
be admitted to a full ICU. An important insight the
authors provide is that the optimal decisions depend
not only on the expected ICU benefit of a patient but
also how long the patient will stay to get this benefit.
This is similar to our finding that the discharge de-
sirability of a patient depends on themagnitude of risk
reduction in future days and not just the absolute risk
level. Bavafa et al. (2019) study the joint problem of
coordinating elective case mix and discharge policies.
They find that coordination has benefits over a siloed
approach when costs of either the operating theater
and/or inpatient beds are sufficiently high. Atlaeddini
et al. (2019) use a nonparametricmethod to predict the
impact of LOS on readmission risk and demonstrate
how this could be used to support discharge planning
via a simple, static optimization model without mod-
eling the readmission process.

George and Harrison (2001), Ata and Shneorson
(2006), Bekker and Boxma (2007), Chan et al. (2014),

and Ingolfsson et al. (2018) study optimal control of
queuing systems with state-dependent service rates.
Huang and Gurvich (2018) and Braverman et al. (2020)
develop new frameworks to identify asymptotic opti-
mal control in single-server queues with abandonment.
Such service rate control works generally provide an
optimal rate but not which customer(s) to discharge.
Furthermore, customers are usually assumed to be ho-
mogeneous, lacking rich, personalized profiles.

2.3. Readmission Prediction
The closest works relating to our readmission pre-
dictionmodel are those of Bardhan et al. (2014), Bartel
et al. (2019), and Helm et al. (2016). The two-stage
concept we use comes from Bardhan et al. (2014), but
the authors take LOS as an exogenous variable, as in
Helm et al. (2016). We use a similar IV strategy as
Bartel et al. (2020) to correct for endogeneity, but that
paper does not have the prediction for timing. Having
the readmission density timing is not only for the
completeness of the patient flow model in our dis-
charge optimization but also because (1) having more
detailed knowledge of when a patient is at risk en-
ables the hospital to better target postdischarge follow-
ups (as requested by our partner hospital), and (2) the
medical literature has shown that the timing of read-
mission is correlated with readmission intensity (e.g.,
resource use, burden on staff; Skolarus et al. 2015).

3. Modeling Framework for Discharge
Decision Optimization

In this section, we formulate an infinite-horizon,
average-cost MDP for optimal discharge decisions
based on the predicted risk trajectories from Sec-
tion 6.1. This discharge decision framework is designed
for use with patients whose medical LOS falls into a
normal range (e.g., 1–15 days), which compromises
most inpatients.We are not suggesting that ourmodel
should control the discharge of patients having ex-
cessively long LOSs or complicated reasons for remaining
in the hospital, who should be handled on a case-by-case
basis based on the doctor’s discretion.

3.1. Patient Flow Model
Figure 3 depicts the patient flowmodel. New patients
arrive to a hospital ward with N beds according to a
time-nonhomogeneous Poisson process with a peri-
odic arrival rate function λ(t). At this point, we as-
sume that the period is one day, with

Λ �
∫ 1

0
λ s( )ds �

∫ t+1

t
λ s( )ds (1)

denoting the exogenous daily arrival rate. We study
the impact of the day-of-week arrival variability in
Section 7.3. Patientsareadmitted following thefirst-come,
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first-serve discipline. After admission, each patient’s LOS
depends on the discharge action and is no longer an
exogenous variable as in conventional queuingmodels.
Once a patient is discharged, he or she is either cured or
will be readmitted with probability that depends on
their risk class and LOS at discharge.

We assume that each patient belongs to a discharge
risk class m with probability pm, where there are M
possible classes; that is,m � 1, . . . ,M, and

∑M
m�1 pm � 1.

Let r(m; j) be the readmission probability for a class m
patient with an LOS of j, and let q(t;m, j) be the
probability that this class m patient will be readmitted
on day t after discharge. (We will remove this classi-
fication later to account for individual risk curves of each
patient in the hospitalwhenadischarge decisionmust be
made; see Remark 2 and Section 5.1.3.) We have

∑T
t�1

q t;m, j
( ) � r m, j

( )
, (2)

where T denotes the maximum time we count a pa-
tientvisit as a readmission (90days in thispaper).Aclassm
patient may become a different class m̃ patient on read-
mission, with probability δm,m̃ (

∑M
m̃�1 δm,m̃ � 1), because

prior readmission is found to be an important factor in
our prediction analysis. Correspondingly, we define one
more quantity for later use, qm̃(t;m, j) � δm,m̃ · q(t;m, j).

Here, r(m; j) and q(t;m, j) depend not only on classm
but also on LOS (index j) before being discharged,
where LOS is no longer an exogeneous variable but
depends on the discharge decision to be specified in
the next section. As key model inputs, these risk
trajectories r(m; j) and q(t;m, j) are estimated from our
prediction model developed in Section 6. Figure 4(a)
shows the personalized predictions for the 90-day
readmission probability, as a function of LOS, for 50
random patients from our data. Figure 4(b) shows the
aggregate risk trajectories {r(m; j)} for M � 3 classes
using the k-means method to group patients based
on the personalized risk curves. Figure 4(c) shows
the estimated density curves q(t;m, j) for t � 7, 14, 21,
30, 60 days after discharge for class m � 2.

Remark 2 (Personalized Trajectory). For analytical con-
venience, we assume in the modeling framework the

patient classifications and the aggregated risk trajecto-
ries. However, our eventual optimization algorithm
developed in Section 5.1 does not rely on the classifi-
cation and can directly take in the personalized risk
trajectory from the prediction. We remove the risk clas-
sification and incorporate personalized patient risk in
the numerical study and implementation in Section 7.

3.2. Infinite-Horizon Average Cost Problem
We formulate the discharge decision as a discrete-
time, infinite-horizon average cost MDP. We specify
the system state, action, transition dynamics, cost,
and objective function.

3.2.1. System State. The system state is captured by
the following M × (J + 1)-dimensional vector:

X t( ) � X0 t( ),X1 t( ), . . . ,XJ t( )( )′
,

where Xj(t) � (X1,j(t),X2,j(t), . . . ,XM,J(t))′, and Xm,j(t)
denotes the number of class m patients who have
spent j days in the system, j � 0, . . . , J. Note thatXm,j(t)
includes both patients in service and waiting for a
bed. Here waiting may take various forms other than
being physically waiting, for example, patients who
have finished treatment but have to remain in the ED
(known as ED boarding) before being admitted to the
inpatient hospital and patients who have received
surgery waiting in the recovery room, among others.
Hospitals are able to track the patient demand (and
thus Xm,j(t)) through bed management systems that
record times of bed requests and bed assignments.We
assume that a patient begins the treatment and re-
covery process immediately on arrival because pa-
tients still receive care even if not immediately placed
in a bed.

3.2.2. Action. Each day the decision maker observes
the system state at a decision epoch (e.g., at the time of
rounds) and determines the number of patients to
discharge. For notational convenience, we assume
that this observation occurs at time zero of each day.
Mathematically, let {X(t), t ≥ 0} denote the system
state, which is a continuous-time stochastic process.

Figure 3. Patient Flow Model of the Hospital Ward
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Let X(k−) and X(k) denote the preaction and postaction
state at decision epoch k (day k). Unless otherwise
specified,we useXk � X(k−), k � 0, 1, . . . , to denote the
preaction state. At decision epoch k, we take dis-
charge action Dk � (D0

k ,D
1
k , . . . ,D

J
k)′, where Dj

k � (D1,j
k ,

D2,j
k , . . . ,DM,j

k )′, and Dm,j
k represents the number of dis-

charges of class m patients who have spent j days in
the system.

As Berk and Moinzadeh (1998) point out, a patient
may progress through a critical stage and then a stable
stage, and the patient can only be discharged in the
stable stage. To capture this feature, we impose a
minimum LOS requirement on the discharge actions.
That is, for patients belonging to class m, we can only
discharge them when their LOS reaches a class-
dependent threshold Lm ∈ [0, J]. Incorporating this
minimum LOS requirement, a feasible discharge ac-
tion satisfies:

Dm,j
k ∈ 0,Xm,j

k

[ ]
, ∀m, j ≥ Lm; (3)

Dm,j
k � 0, ∀m, j < Lm. (4)

3.2.3. Transition Dynamics. Let Am,0
k denote the num-

ber of new arrivals belonging to class m in period k
(between decision epochs k and k + 1), and let A

′m,0
k

denote the number of readmissions belonging to class
m. For each m, the state evolution is

Xm,0
k+1 � Am,0

k + A
′m,0
k ; (5)

Xm,j
k+1 � Xm,j−1

k −Dm,j−1
k , j � 1, . . . , J. (6)

Equation (5) captures the arrivals to the hospital ward
in period k. Equation (6) says that patients who have
stayed j − 1 days in period k become patients who
have stayed j days in period k + 1, except for those
who are discharged, Dm,j−1

k .
The total number of exogenous arrivals

∑M
m�1 A

m,0
k

follows a Poisson distribution with meanΛ. By Poisson

splitting, Am,0
k is distributed as Poiss(Λm) with Λm �

pmΛ. The readmission arrival stream A
′m,0
k , by con-

trast, depends on past discharge actions; that is,

A
′m,0
k � ∑T

t�1

∑J
j�1

∑M
m̃�1

Bin Dm̃,j
k−t, qm t; m̃, j

( )( )
,

where Bin(·, ·) denotes a binomial random variable,
and qm(t; m̃, j) and T are given in Section 3.1.

3.2.4. One-PeriodCost. The currentperiod cost function
is composed of the ward occupancy congestion cost
ch(Xk) and the discharge cost cd(Dk), which depends on
the expected number of readmissions given the patients
being discharged. One reasonable form for ch(Xk) and
cd(Dk) follows:

ch Xk( ) � C · Sk −N( )+ , (7)
where C is the unit holding cost, Sk � ∑M

m�1
∑J

j�0 X
m,j
k is

the total patient census, and (Sk −N)+ captures the
overage, that is, the number of patients who cannot be
accommodated in a ward bed at epoch k; that is,

cd Dk( ) � ∑M
m�1

∑J
j�0

∑T
t�0

RtE Bin Dm,j
k , q t;m, j

( )( )[ ]

� ∑M
m�1

∑J
j�0

Dm,j
k

∑T
t�0

Rtq t;m, j
( )

, (8)

where q(t;m, j) is given in (2), and Rt denotes the
corresponding penalty cost.We allow the penalty cost
Rt to depend on the timing of readmission because
early readmitters are found to require more intensive
care than late readmitters (Skolarus et al. 2015). In
the case where Rt � R for all t, we have

cd(Dk) �
∑M
m�1

∑J
j�0

Dm,j
k R · r(m, j)

Figure 4. Predicted Readmission Risk Trajectory against LOS

(a) (b) (c)

Notes. The first and second plots show the 90-day cumulative probability as a function of LOS (50 random patients versus average curves for
M � 3 classes from the clustering). The third plot shows the readmission density on different days (7–60 days) as a function of LOS for classm � 2
under M � 3 classes.
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from (2). The overage cost from (7) is commonly
adopted in modeling inpatient ward congestion
(Samiedaluie et al. 2017, Armony et al. 2018), which
captures the undesirable consequences for blocked
admissions to inpatient beds, for example, patients
boarding in the ED and cancellation of elective surgeries.
Unused inpatient bed capacity is often regarded as a sunk
cost. In Section D.1 of Online Appendix D, we also con-
sider other forms of ch(Xk) such as ch(Xk) � C · Sk and
C · S2k that capture the effect of the total patient census
and ward occupancy.

3.2.5. Objective. LetΠ � {Dm,j
k } be the set of admission

policies such that Dm,j
k satisfies (3) and (4). Let {Xπ

k } be
the resulting state under a policy π ∈ Π. We can now
write the objective function for the infinite-horizon
long-run average cost problem for policy π ∈ Π:

Zπ � lim sup
τ→∞

1
τ

∑τ−1
t�0

E ch Xπ
k

( ) + cd Dk( )[ ]
. (9)

We end this section with two remarks on the cost
parameters and the readmission arrivals {A′m,0

k }.
Remark 3 (Cost Parameters). The cost parametersC and
Rt may be difficult to estimate in practice. In our
analysis, we use them primarily as tuning parameters to
reflect the tradeoff between discharging too few versus
too many patients. In the numerical study and the
implementation, we derive efficient frontiers for the
decision makers to identify an operating regime to
achieve their desired performance measures, elimi-
nating reliance on the cost parameters themselves.

Remark 4 (Readmission Arrival). Because the read-
mission window is long and the readmission prob-
ability is not large (with an average of around 10%–20%),
each discharged patient’s contribution to the readmission
arrival rate on any given day is small. This leads to a
smoothing effect on the readmission arrival rate across
discharge policies as long as the day-to-day discharge
actions do not fluctuate too much (Greenberg 1989; see
Section D.2 of Online Appendix D for some numerical
evidence). To maintain the Markov property of the MDP
and to obtain insightful structural properties for devel-
oping solution algorithms, we consider the readmission
arrivals {A′m,0

k } as exogenous variables for Theorem 1 and
technical results in Sections 4 and 5. However, in the
numerical study in Section 7 and implementation, we
relax the assumption on the readmission arrivals being
exogenous. We simulate patient readmissions according
to the estimated readmission timing distributions, which
depend on the discharge actions and individual patient

characteristics. We show that although the solution al-
gorithm is developed under the exogenous assumption, it
provides significant improvement over current practice.
To implement the algorithm in the relaxed setting, we
estimate the readmission arrival distributions from a static
policy developed in Section 3.3, which explicitly charac-
terizes the impact of discharge on readmission and has an
analytical solution.

3.3. Bellman Equation and Challenges in
Solving the MDP

Denote the optimal solution to (9) as

γ∗ � inf
π∈ΠZπ. (10)

Theorem 1 proves the existence of an average cost
optimal stationary policy. Its proof is detailed in
Section B.1 of Online Appendix B.

Theorem 1. For the average cost optimality equation de-
fined by Equations (9) and (10), there exists an average cost
optimal stationary policy.

Let Ak denote the vector of random arrivals from
each class, including both new and readmission ar-
rivals (see Remark 4). For a given state x � (x0, x1, . . . ,
xJ) with xj � {x1,j, . . . , xM,j}, the Bellman equation is
given by

V x( ) � min
D∈Π ch x( ) + cd D( ) − γ∗ + EAkV Ak, x0 −D0,

(
x1 −D1, . . . , xJ−1 −DJ−1), ∀x ∈ S,

(11)
where D � (D0, . . . ,DJ) is the action vector with Dj �
(D1,j, . . . ,DM,j)′, S is the state space, γ∗ is the opti-
mal long-run average cost, and V(·) is the (relative)
value function.
Because we have to track both the patient class

(index m) and how long the patient has spent in the
hospital (index j) in the state space and the action
space, solving the Bellman equation (11) has a curse of
dimensionality. If we cap the number of patients of
each type (class, LOS) to be S̄, both the state space and
action space are of size S̄M·(J+1). In a simple two-class
settingwhere patients are kept at most three days and
S̄ � 30, the state space is of size 304×2 � 6.56× 1011.
ConventionalMDP techniques such as value or policy
iteration become computationally challenging, if not
entirely infeasible, even in this simple setting. In
Sections 4 and 5, by identifying useful structural
properties and leveraging solutions from a special
cost setting, we heuristically convert this MDP to a
univariate optimization problem and develop an ef-
ficient dynamic algorithm.
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3.3.1.ABenchmarkSolution:StaticDischargeThresholds.
When the action space is constrained to static-
threshold policies (i.e., a patient is not discharged
until his or her risk level drops below a preset thresh-
old), the MDP becomes tractable via steady-state
analysis, which we specify later. The resulting static
policy provides a benchmark solution that we can
compare with policies from the dynamic algorithm
developed under the full action space. In addition, this
steady-state analysis also generates useful insights
into the interplay between system congestion and
discharge risk.

For the static optimization, there is a one-to-one
relationship between the risk level and the LOS. Thus,
it is equivalent to optimize the thresholds on LOS for
each class m, denoted as lm. For a given policy πwith
thresholds for LOS, (l1, . . . , lM), the distribution on
number of discharges from class m on day k, Dm

k �
Xm,lm

k , is stationary under π. Let E[Dm] denote the
steady-state expectation of Dm

k , and let E[Q] denote
the steady-state expected queue length under policy
π. We show in Section B.6 of Online Appendix B that
minimizing the long-run average cost is equivalent
to minimizing

∑M
m�1

∑T
t�1

Rt · qm̃ t;m, lm( ) · E Dm[ ] + C · E Q[ ] . (12)

Here E[Dm] can be found by solving the following set
of flow-balance equations:

E Dm[ ] � E Am,0
k

[ ] + E A′ m,0
k

[ ]
� Λm +∑M

m̃�1

∑T
t�1

qm t; m̃, lm̃( ) · E Dm̃[ ]
,

m � 1, . . . ,M. (13)

If patients do not change classes on readmission, we
have E[Dm] � Λm/(1 − r(m, lm)) by (2). For E[Q], we
discharge all Dm

k � Xm,lm
k patients on each day k. Here

Xm,lm
k is composed of new arrivals Am

k−lm ∼ Poiss(Λm)
and readmissions A′ m

k−lm , which we approximate as a
Poisson for tractability. Then E[Q] ≈ E[(∑M

m�1
∑lm−1

j�0
Poiss(Λm + E[A′ m,0

k ]) −N)+].
For ease of exposition, we present the results on the

optimal occupancy in steady state for a single class of
patients; the results and insights extend to the mul-
ticlass problem.We drop the index on classm and use
� to denote the discharge threshold, with a slight
abuse of notation, to define the associated discharge
risk as q(t; �) and r(�) �∑T

t�1 q(t;�). Let Λ̃ � Λ/(1− r(�)) �
Λ + Λr(�)/(1 − r(�)) denote the total arrival rate in-
cluding readmissions.

Proposition 1. Under a normal approximation for the
Poisson distribution with mean Λ̃, the optimal discharge
threshold l solves the following equation:

∑T
t�1

Rt
∂q t; �( )
∂�

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ · Λ̃ +∑T

t�1
Rt · q t; �( ) ∂Λ̃

∂�

⃒⃒⃒
⃒⃒

⃒⃒⃒
⃒⃒

� C 1 −Φ α( )( ) ∂B
∂�

,

(14)

where Φ(·) is the cumulative distribution function of
standard normal, B � � · Λ̃ is the system offered load,
and α � N−B̅̅

B
√ .

The proof is given Section B.6 of in Online Ap-
pendix B. Equation (14) characterizes the optimal
discharge threshold and, consequently, the optimal
offered load B under the given cost parameters.
We make two observations from Proposition 1.

First, the equation characterizes the optimal thresh-
old in terms the marginal increase in readmission risk
versus marginal increase in congestion. That is, the
left-hand side depends on the marginal change in
the discharge risk ∂q(t; �)/∂�; the right-hand side is the
probability of exceeding capacity (1 −Φ(α)) times the
marginal increase in system workload ∂B/∂�, that is,
the marginal for system congestion. To see the latter,
note that

1 −Φ α( ) � P Z > α( ) � P Z >
N − B̅

B̅
√

( )

� P B + Z
̅
B̅

√
> N

( )
,

where B + Z
̅
B̅

√
approximates the total number of

patients (or workload) in the system. This equation
reveals the interplay between the two key tradeoffs
we capture in the decision framework: balancing
readmission risk and ward congestion.
Second, the optimal threshold explicitly depends

on Rt and ∂q(t; �)/∂�, the time-dependent cost pa-
rameters, and how � affects the readmission density
q(t; �) for different t. Figure 4(c) shows that extending
LOS mostly impacts the readmission density for t
before 21 days; for t larger than 60 days, the density
has negligible changes when changing LOS. Thus, if
one puts more weight on readmissions before 21 days,
it is more beneficial to extend the patient’s stay, and
vice versa.

4. Who to Discharge: Structural Properties
on Optimal Actions

In this section, we analyze the structure of the optimal
solution to the Bellman equation and establish two
results: (1) a ranking of patients to discharge and (2) a
threshold discharge policy that follows the ranking
when a strong dominance property holds. That is, the
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optimal policy will discharge all patients of a higher
rank before discharging any patients of a lower rank
in terms of strong dominance. The structural results
developed here provide insights into one of the two
key research questions: who to discharge; we answer
the how many to discharge question in Section 5.

Definition 1 (Strong Dominance). Define patient type via
(class, LOS). Type (m1, t1) strongly dominates type
(m2, t2), or (m1, t1) 
 (m2, t2), if and only if

∂r m1, t1 + t( )
∂t

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ ≤ ∂r m2, t2 + t( )

∂t

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒, ∀t ≥ 0. (15)

The strong dominance says that the (absolute) mar-
ginal change in the readmission risk between today
and any future day for type (m1, t1) is smaller than for
type (m2, t2). At a high level, one trajectory strongly
dominates another if the absolute value of the slope in
the LOS dimension is smaller. Because the read-
mission risk always decreases in the LOS from our
prediction, the derivative is negative, and this defi-
nition is equivalent to ∂r(m1,t1+t)

∂t ≥ ∂r(m2,t2+t)
∂t ,∀t ≥ 0.

Strong dominance always holdswithin a class. That
is, for any t1 > t0, (m, t1) 
 (m, t0), the marginal change
in the readmission risk for a patient with a longer LOS
is always smaller than that for a patient with a shorter
LOS because r(m, ·) is decreasing and convex (see the
proof of convexity in Section B.5 of Online Appendix
B). Our prediction results also show that this strong
dominance property is satisfied when we group pa-
tients into M from 3 to 10 classes and use the corre-
sponding aggregated risk trajectories (Figure 4(b)
shows aggregated curves for M � 3). However, the
strong dominance does not necessarily hold for any
two patients when we use completely personalized
risk trajectories in the numerical study and imple-
mentation. In this case, although the optimality of the
structural properties we prove in the rest of this
section is not guaranteed, we follow the same spirit
and develop a weak dominance criterion that still
allows us to rank patients and apply a similar threshold
discharge policy (see Section 5.1.3).

We start analyzing the structural of the optimal
actions by first proving the following proposition,
which demonstrates that keeping the strong-
dominant patient longer provides less benefit (smaller
discharge cost reduction) than keeping the dominated
patient longer. Let e(m,t) denote the unit vector with
one in the position corresponding to type (m, t) and
zero elsewhere. Adding this vector to Dk indicates
adding a single discharge of patient type (m, t) in
the action.

Proposition 2. For cd(D) of the form (8) and Rt � R, if
(m1, t1) 
 (m2, t2), then in any epoch k, the following holds
for any future epoch, k′ > k: cd(Dk + e(m1,t1)) − cd (Dk′ +
e(m1,t1+k′−k)) ≤ cd(Dk + e(m2,t2)) −cd(Dk′ + e(m2,t2+k′−k)).
The proof is in Section B.2 of Online Appendix B.

Next, we leverage Proposition 2 to prove a theorem
that allows us to rank patients and discharge them in
strict order of their ranking. We specify the proof for
the simpler case where the two interchanged patients
have not reached their maximum LOS and leave the
other more tedious case to Section B.3 of Online
Appendix B. The unit vector e(m,t)multiplyingDk orXk

gives the numberof (m, t)patients in the corresponding
action or state; for example, Dk · e(m,t) � Dm,t

k .

Theorem 2. For cd(D) of the form (8) and Rt � R, consider
two patient types (m1, t1) 
 (m2, t2). Then the optimal
discharge action D∗

k · e(m2,t2) > 0 only if D∗
k · e(m1,t1) �

Xk · e(m1,t1); that is, we would discharge patient type (m2, t2)
only if we have discharged all type (m1, t1) patients.
Proof. We prove the theorem via an interchange ar-
gument on two patients of type (m1, t1) and (m2, t2),
respectively. Suppose at period k that D∗

k · e(m2,t2) � 1
and that D∗

k · e(m1,t1) � Xk · e(m1,t1) − 1. If D∗
k · e(m2,t2) � n

and D∗
k · e(m1,t1) � Xk · e(m1,t1) − n, we can repeat the in-

terchange argument iteratively to achieve the same
result because the discharge cost function is linear.
Suppose that this one patient of class (m1, t1) who was
not discharged in period k is discharged at a later time
k′. Call this policyπ1, with value functionVπ1

k (Xk). Now
consider a second policy π2 that switches the discharge
timing of the type (m1, t1) patient and the type (m2, t2)
patient that we track in the interchange argument.
All other actions remain the same. First, consider the
case where t1 + k′ − k ≤ J, that is, that k′ is not beyond
type (m2, t2) patient’s maximum LOS. LetDk andDk′ be
the discharge actions excluding the two switched pa-
tients. Then

Vπ2 − Vπ1 � cd Dk + e m1,t1( )
( )+cd Dk′ + e m2,t2+k′−k( )

( )
− cd Dk + e m2,t2( )

( ) − cd Dk′ + e m1,t1+k′−k( )
( )

� cd Dk + e m1,t1( )
( )−cd Dk′ + e m1,t1+k′−k( )

( )
− cd Dk + e m2,t2( )

( ) − cd Dk′ + e m2,t2+k′−k( )
( )( )

≤ 0 .

The first equality follows because the occupancies are
the same under both policies under all sample paths,
so the occupancy costs cancel out, and so do the
discharges costs for all patients except the two inter-
changedpatientsbecauseourdischarge cost is linear. The
inequality follows from Proposition 2, which shows
that the first two terms in the second line are smaller
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than the second two. The proof for the second case
where t1 + k′ − k > J is given in Section B.3 of Online
Appendix B. Because π2 produces a smaller cost than
π1, π1 cannot be the optimal policy, contradicting the
assumptions made at the beginning. □

Theorem 2 implicitly provides a ranking of patient
types. In particular, this discharge ranking depends
onmarginal risk and not absolute risk, as has been the
prevailing approach according to our discussions
with hospitals. We now formalize the ranking, letting
[i] be the ith-ranked patient type, which means that
[j] 
 [i],∀j < i, [1] being the highest rank (most de-
sirable to discharge). We prove the univariate threshold
structure of the optimal policy.

Corollary 1. The optimal discharge policy D∗
k for the op-

timization defined by (11) is of threshold form, with uni-
variate threshold D̃∗(X), where

D∗
k · e i[ ] � min X i[ ]

k , D̃ Xk( ) −∑
j<i

X
j[ ]

k

( )+( )
. (16)

Proof. We prove this by contradiction. Suppose that
policy Dk is not of the form in (16). Then it must be
the case that there exists Dk · e[i] > 0 and Dk · e[j] < X[j]

k
for some j < i. However, this cannot be optimal by
Theorem 2. □

Remark 5. For ease of exposition, in the rest of this
paper, we let Rt � R. The analytical results from this
section extend to the more tedious time-varying case
Rt if we redefine the strong-dominance criterion for
(m1, t1) 
 (m2, t2) as ∂R̃(m1,t1+t)

∂t

⃒⃒⃒ ⃒⃒⃒
≤ ∂R̃(m2,t2+t)

∂t

⃒⃒⃒ ⃒⃒⃒
∀t≥ 0, where

R̃(m, j) � ∑T
t�0 Rtq(m; j, t).

5. How Many to Discharge: Dynamic
Discharge Decision Support

In the preceding section, we answered the question of
whom to discharge. To solve the final discharge op-
timization, however, we still need to answer the
question of how many to discharge from the high-
dimensional MDP. To overcome this challenge, we
leverage a linear-quadratic solution from a special
cost setting to approximate the cost-to-go in the
originalMDP. Alongwith the structure of the optimal
policy obtained in Section 4,we transform the original
MDP into a univariate optimization problem, which
significantly reduces the computational complexity
and makes the solution tractable. In Section 5.1, we
first present this dynamic algorithm. We then show
its adaption to the realistic, complex hospital envi-
ronment by relaxing the analytical assumptions in
Section 3. In Section 5.2, we demonstrate the near-
optimal performance of this dynamic algorithm in

small-scale problems where the conventional value
iteration is still feasible.

5.1. Dynamic Discharge Algorithm
The key to the univariate transformation of our dy-
namic algorithm relies on two properties: (1) the
structural properties proved in Section 4map the high-
dimensional action space into an equivalent univariate
action space, and (2) analytical solutions from a special
quadratic cost setting allow us to approximate the cost-
to-go with a quadratic function of the total occupancy,
which only depends on the univariate action in (1),
maintaining the univariate action space.Wefirst analyze
this special cost setting as a linear-quadratic stochastic
control in Section 5.1.1. Thenwe show how to leverage
its solutions to approximate the cost-to-go in the
original MDP and transform it into the univariate
optimization in Section 5.1.2. In Section 5.1.3, we
discuss how to adapt the dynamic algorithm when
we incorporate personalized risk trajectories (where
strong dominance may no longer hold) and nonsta-
tionary arrivals. This demonstrates the flexibility and
robustness of our dynamic algorithm in more com-
plex hospital environments.

5.1.1. Linear-Quadratic Special Case. In this section,
we consider a specialfinite-horizon version of (9)with
T + 1 periods and a quadratic structure for both ch(·)
and cd(·). Recall that Sk � ∑

m,j X
m,j
k denotes the total

number of patients in the system. Let c̃h(Xk) � C · S2k
and c̃d(Dk) � R ·∑m,j r(m, j)(Dm,j

k )2, where we use c̃h and
c̃d to emphasize that they are for the special setting.
Furthermore, we assume that (1) Xm,J

k is an absorbing
state—that is, once reaching day J (themaximumLOS
in the original problem), the patients will stay in that
state—and (2) the action space is unconstrained—that
is, Πun � {Dm,j

k ∈ R}. Given an initial state X0, the
optimization problem can be written as

Vπ
k,LQ Xk( ) � ∑T

t�k
E C · S2t + R ·∑

m,j
r m, j
( )

Dm,j
t

( )2[ ]

+ E C · S2T+1
[ ]

,

V∗
LQ X0( ) � min

π∈Πun

Vπ
0,LQ X0( ) . (17)

Proposition 3 shows that in this finite-horizon setting,
the optimal discharge action is linear in Sk, and the
value function is a quadratic function of Sk.

Proposition 3. The optimal discharge decision of prob-
lem (17) is given by

Dm,j
k,LQ � am,j

k Sk + bm,j
k , (18)
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and the value function is given by

Vπ
k,LQ Xk( ) � αkS2k + θkSk + κk . (19)

Here am,j
k denotes the (j − 1)M +mth entry of vector U−1

k(αk+1, . . . , αk+1)′, and bm,j
k denotes the ( j − 1)M +mth entry

of vectorU−1
k Bk. The matrixUk and vector Bk are given by

Uk �
αk+1 + R0 αk+1 . . . αk+1

αk+1 αk+1 + R1 . . . αk+1
. . .

αk+1 αk+1 . . . αk+1 + RJ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

Bk � αk+1E Ak[ ] + θk+1/2( ) · 1,

where Rj � R · (r(1, j), . . . , r(M, j))′, 1 � (1, . . . , 1)′ denotes
the ones vector, Ak denotes the total arrivals from all classes
including readmissions, and constants αk, θk, and κk can
be recursively calculated using ak, bk, αk+1, θk+1, and κk+1.

The proof in Section B.4 of Online Appendix B uses
an induction argument where we also provide specifi-
cations of the constants αk, θk, and κk. In addition,Dm,j

k,LQ
in Equation (18) connects to the linear decision rule
used in stochastic optimization (Chen et al. 2008).
Next, we use this linear decision rule as an approx-
imation for the optimal actions (in future periods) in
the originalMDP and the quadratic functionVπ

k,LQ(Xk)
as an approximation for the cost-to-go. We refer to
these approximations as the linear-quadratic approxi-
mation. This is also the main purpose for analyzing
this special case: to provide an analytical building
block for tackling the original, general-cost MDP.

5.1.2. Transformation into UnivariateOptimization. 5.1.2.1.
Action Space Reduction. If the strong-dominance
property holds, Corollary 1 allows us to reduce the
action space to a univariate decision D̃ � D̃(Xk), the
total number of discharges on day k; there is a one-to-
one mapping from D̃ to the discharge action Dm,j

k (D̃)
for each class m and LOS j from (16). When strong
dominance does not hold, we develop in Section
5.1.3 a more general criterion that still allows us to
rank patients and maintain a one-to-one mapping
from D̃ to Dm,j

k (D̃) such that we can still focus on
solving the univariate decision D̃.

5.1.2.2. Cost-to-Go Approximation. To approximate
the cost-to-go function (the last term in (11)), we start
from the state in period k and expandperiod k + 1with
actions approximated by the linear decision rule (18),
ajk+1Sk+1 + bjk+1, where am,j

k+1 and bm,j
k+1 are the linear co-

efficients for the number of class (m, j) patients to
discharge given total occupancy of Sk+1 in period
k + 1. We then use the quadratic approximation for

the future cost (period k + 2 and beyond), V∗
LQ(Sk+2),

given by (17). The optimal total discharge is therefore

D̃∗ Xk( ) � argmin
0≤D̃≤Sk

ch Xk( ) +∑
m,j

R · r m, j
( )

Dm,j
k D̃
( ){

+ E ch Xk+1( )[ ]

+ E
∑
m

R · r m, J( ) Xm,J−1
k −Dm,J−1

k D̃
( )( )[

+∑
m

∑
j��J

R · r m, j
( )

am,j
k+1Sk+1 + bm,j

k+1
( )

+E V∗
LQ Sk+2( )

[ ]]}
. (20)

The first two terms capture the congestion cost and
discharge cost for the current period k. The third term
captures the congestion cost in period k + 1, whereas
the fourth and fifth terms capture the discharge cost in
period k + 1. The fourth term is the discharge cost for
patients who have reached their maximum LOS in
period k + 1, and the fifth term is the discharge cost for
all other patients approximated by the optimal ac-
tions (18). The final term is the quadratic approxi-
mation for future cost in period k + 2 and beyond.

5.1.2.3. Univariate Optimization. Equation (20) is a
univariate optimization when ch(Xk+1) only depends
on Sk+1, for example, when ch follows (7) or ch(Xk+1) �
C · Sk+1 or C · S2k+1. To see this, notice that Sk+1 � Sk−
D̃ + Ak, and Sk+2 � Sk+1 −∑

m(Xm,J−1
k −Dm,J−1

k (D̃))− ∑
m∑

j��J(am,j
k+1Sk+1 + bm,j

k+1) + Ak+1; both only depend on the
univariate decision D̃ given the realization of the to-
tal arrivals in k and k + 1 (Ak and Ak+1), which are not
class specific. Furthermore, V∗

LQ(Sk+2) only depends
on the total occupancy Sk+2. In otherwords, the linear-
quadratic solutions from Proposition 3 we use for
approximating the future decisions and value func-
tions only depend on the total number of discharges,
which allows us to calculate the distribution of Sk+1
and Sk+2 with the univariate decision variable D̃.
Combining this with the action space reduction re-
sults in a univariate optimization problem in D̃.

5.1.2.4. Tuning Parameters. If the number of pa-
tients reaching the maximum LOS, Xm,J−1

k −Dm,J−1
k (D̃),

is small, which we expect to be the case given
that J is chosen as an upper bound on LOS, then Sk+2 ≈
(1−∑

m
∑

j��J a
m,j
k+1) Sk+1 −

∑
m
∑

j ��J b
m,j
k+1 + Ak+1 is linear

in Sk+1 and Ak+1. Recall from Proposition 3 that
V∗

LQ(Sk+2)�α0S2k+2+θ0Sk+2+κ0. Thus, EAk+1[V∗
LQ(Sk+2)]

can be written as a quadratic function in Sk+1. Using
the linear structure of (ajk+1Sk+1 + bjk+1) in Sk+1 and
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taking out ch(Xk) because it does not depend onDk, we
can further simplify (20) as

D̃∗ Xk( ) � argmin
0≤D̃≤Sk

{∑
m,j

R · r m, j
( )

Dm,j
k D̃
( )

.

+ EAk ch Xk+1( )[ ] + EAk α̃S
2
k+1 + β̃Sk+1 + κ̃

[ ]}
,

(21)
where α̃ and β̃ can be treated as tuning parameters. In
implementation of the dynamic algorithm, we fine-
tune α̃ and β̃ to achieve a better performance for
different cost structures.

The approximation for cost-to-go based on V∗
LQ(Sk+2)

works well in most of our tested settings when
the holding-cost structures are close to liner or qua-
dratic, for example, ch(Xk) � C · Sk orC · S2k , or as in (7),
where the queue length (Sk −N)+ is a piecewise linear
function and can be well approximated by quadratic
functions in Sk.

5.1.3.Adaption to theRealisticHospitalEnvironment. 5.1.3.1.
Nonstationary Arrival. When the arrival rate E[Ak] is not
stationary, for example, exhibiting the day-of-week
phenomenon, we can evaluate the two expectation
terms in (21) using the corresponding arrival rates
and tune theparameters α̃ and β̃ separately for different
day of week.

5.1.3.2. Personalized Risk Trajectory. Asmentioned in
the Introduction, our readmission risk prediction is
able to produce personalized risk trajectory based
on individual patient profile. Notice that the last
two (expectation) terms in the optimization in (21) do
not depend on class-specific information. As long as
we have a ranking that maps D̃ to specific individual
patients to discharge, that is, Di

k(D̃) for each patient i
currently in the hospital unit, then we are able to
eliminate the dependence on patient classification
and incorporate personalized risk trajectory r(i, j).
That is, we simply replace

∑
m,j R · r(m, j)Dm,j

k (D̃) with∑
i R · r(i, j)Di

k(D̃) in (21).

5.1.3.3. Weak Dominance. If the strong-dominance
property in (15) is a complete order (i.e., it is satis-
fied for any pair of patients), we can simply extend
Corollary 1 to define the mapping Di

k. However, our
prediction results suggest that this is not always the
case when using individual risk trajectories (even
though we have this property when using the ag-
gregated trajectories for up to M � 10). The structure
of the optimal actions becomes much more nuanced
when strong dominance is violated.

To address this challenge, we again leverage the
linear-quadratic approximations from Proposition 3
to approximate futuredecision rules andvalue functions.
Combining with a decomposition heuristic specified in
Section C.1 of Online Appendix C, we identify deter-
minants that drive the discharge quantities for each
patient type (m, j) and obtain a more general weak-
dominance criterion in terms of the following score:

ω m, j
( ) � ψ

m,j
1 Rm,j − Rm,j+1
( ) + ψ

m,j
2 Rm,j − Rm,j+2
( )

+ · · · + ψ
m,j
J−j Rm,j − Rm,J
( )

,
∑J−j
t�1

ψ
m,j
t � 1,

(22)

where Rm,j � R · r(m, j), and ψ
m,j
t relates to the linear

coefficients am,j
k and bm,j

k (see Section C.1 of Online
Appendix C). To incorporate the individual risk trajec-
tory, we can substitute the terms Rm,j − Rm,j+t with Ri,j −
Ri,j+t for each patient i. The strong dominance is a
special case of the weak dominance.
To interpret (22), the parameterψm,j

t can be seen as a
reflection of the probability (proportion) that a type
(m, j) patient is discharged t days from today (under
the linear-quadratic approximation). Thus, this score
is a weighted average of the marginal improvements
in readmission risk over the patient’s remaining LOS
trajectory, where the weight is driven by how likely
the patient is to be discharged on a certain day. Tuning
the weight parameters in (22) for different cost struc-
tures is not as straightforward aswhat we did for (21).
Motivated by the preceding interpretation, in the
counterfactual study and implementation, we lever-
age the static discharge thresholds l∗m from Section 3.3
and set ψm,j

t � 1 for t � l∗m − j and zero otherwise. Our
numerical results suggest that this modified weak
dominance performs well in a variety of settings (see
SectionC.2 ofOnlineAppendixC for some examples).

5.2. Performance of the Dynamic Algorithm
In this section,we demonstrate the performance of the
algorithm by (1) comparing the actions solved from
the dynamic algorithm with those from value itera-
tion in small-scale MDPs and show that the dynamic
algorithm is able to achieve near-optimal perfor-
mance and (2) comparing the dynamic algorithmwith
several heuristics, including the static threshold policy
and a one-step improvement on the static threshold
policy, in a simulation setting for a suite of different
parameters. In the interest of space, we demonstrate one
setof results for the small-scaleMDPhereand leaveother
experiments to Online Appendix C: (1) additional nu-
merical results in the small-scale MDP, including when
the strong dominance no longer holds, and (2) com-
parison with additional heuristics.
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In the small-scale MDP, we consider two classes
of patients with maximum LOS J � 3 days. The risk
trajectory for each class follows r(1, j) � {1, 0.3, 0.2,
0.15} and r(2, j) � {1, 0.3, 0.08, 0.06}, satisfying the
strong-dominance criterion. We set C � 1, R � 6, and
N � 12, 20. Figure 5 shows the gap between the op-
timal actions obtained from value iteration versus the
actions obtained from our dynamic heuristic for each
class. For comparison, we also plot the gap for a
myopic policy, wherewe ignore the cost-to-go and set
α̃ � β̃ � 0 in (21). From all the states, the maximum
gap between our dynamic heuristic and the optimal
action is one (Figure 5(a)) or two in only a few states
(Figure 5(b)), whereas the myopic policy performs
poorly. This demonstrates the importance of a more
nuanced approach to discharge management.

6. Patient Risk Trajectory Prediction
For the development and implementation of the com-
plete decision support system, a critical component is
the patient risk trajectory prediction, which provides
input to the discharge optimization framework. As
mentioned in the Introduction, we need to address
the endogeneity issue and provide a prediction in
both the probability and timing of readmission.When
applying the classical Cox proportional hazardmodel
to predict readmission timing, we find two additional
challenges. First, the prediction curves were being
heavily distorted by the fact that many patients are
never readmitted in the data, that is, the excess zero
count issue (Bardhan et al. 2014). Second, the Cox
model produces a time-to-readmission curve that
has the same baseline hazard function for all patients:
the postdischarge readmission risk peaks at the
same time for all patients. However, our data indicate
that some patients exhibit early readmitter behavior,
whereas others exhibit late readmitter behavior (see
Figure 6 from our partner hospital).

To the best of our knowledge, existing off-the-shelf
models alone cannot provide sufficient input. In this
section, we develop a new prediction approach to

generate the risk trajectory inputs for our optimization
framework.Wedescribed the development of this tool in
Section 6.1 and then validate and report the perfor-
mance of the tool in Section 6.2.

6.1. Prediction Model
Our approach, which addresses the aforementioned
challenges, is summarized in Figure 7. In stage 1, we
use a cure model to address excess zero count. This
stage predicts the overall probability that a patient is
eventually going to be cured or readmitted (Yu 2008,
Bardhan et al. 2014). For patients who are not cured
(will be readmitted), wemove to stage 2, where we use
a mixture model to capture patient heterogeneity with
clustering and estimate different time-to-readmission
curves for each cluster. We use an IV method, replac-
ing LOS with a predicted LOS in stages 1 and 2, as a
preprocessing stage to correct for endogeneity.
Mathematically, for stages 1 and 2, let Ci denote

patient i’s cure status, where

Ci � 1, cured,
0, uncured.

{

Conditioning on Ci � 0, a patient belongs to one of W
clusters with probability πw for w � 1, . . . ,W (e.g.,
early-readmission versus late-readmission cluster),
and {πw} values are population membership proba-
bilities with

∑W
w�1 πw � 1. Each cluster w has an as-

sociated time-to-readmission proportional hazard rate
function hw(t; i). For each patient i, we use Zi to denote
which cluster patient i belongs to, with Zi being
drawn from a multinomial distribution with mixing
weights {πw}.
Both the cured status Ci and the membership var-

iable Zi are latent variables, that is, unobservable. In
particular, the cured status Ci is partially observable
(Yu 2008). That is, if a patient is readmitted, we know
that he or she must have been uncured; however, if
this patient is not readmitted, we do not know whether
he or she is cured or uncured, but the readmission time
is censored. To perform parameter estimation with

Figure 5. Small-Scale MDP Validation

(a) (b) (c)

Notes. We set N � 12 or 20, Λ1 � Λ2 � 2, C � 1, and R � 6. In plot (a), N = 12. In plot (b), N = 20. In plot (c), N = 12 with myopic policy.
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these latent variables, we develop an expectation–
maximization (EM) framework. The basic idea is to
first find surrogates for the cured probability and
membership probability. Then we iteratively update
the estimation of these surrogates in the E-step of the
EM algorithm and update the estimation of the pa-
rameters in the M-step by maximizing the (approxi-
mate) log-likelihood function. We leave the details of
the EM algorithm to Section A.2 of Online Appen-
dix A.

Next, we specify (1) the parametric models for
stages 1 and 2, (2) readmission probability calculation,
and (3) the IV method for the preprosessing stage.

6.1.1. Parametric Models. In the first stage, we assume
that the probability of a patient being cured follows a
logit model. For patient i with features Yi, his or her
cure probability θ0i � P(Ci � 1) follows

log
θ0i

1 − θ0i

( )
� Yiξ, (23)

where ξ is the set of coefficients associated with the
individual patient’s characteristics and risk factors,
denoted as Yi:

Yi � log LOSi( ),Ye
i

( )
.

tHere Ye
i � (Ye

i,1, . . . ,Y
e
i,K−1) denotes K − 1 exogenous

variables such as patient age, gender, and medical
specialties. During the model training phase (for pa-
rameter estimation), we replace the actual log(LOSi)
observed from data with log( ˆLOSi) predicted from a
linear regression in stage 0, the preprocessing stage.
For the second stage, we use the Cox model. For

patient i in cluster w, the hazard rate is

hw t; i( ) � hw0 t( )eYiβw , w � 1, . . . ,W. (24)
The baseline hazard rate function hw0 (t) follows the
Weibull form (see Section A.1 of Online Appendix A)
with cluster-dependent parameters λw and kw. The
coefficients βw � {βw1 , . . . , βwK} are also cluster depen-
dent, and Yi is the same as the first stage, but βw can be
different from ξ.

Figure 6. Plot of Readmission Risk for Sampled Early and Late Readmitters from Data

(a) (b)

Figure 7. Conceptual Diagram of Prediction Model Development

Shi et al.: Balancing Inpatient Congestion vs. Readmission Risk at Discharge
Operations Research, Articles in Advance, pp. 1–24, © 2021 INFORMS 15



6.1.2. Readmission Probability. For a patient i′ (could
be either in or not in the training data), we calculate
his or her readmission timing by first obtaining the
cure probability θ̂0i′ from the logit model (23). Then
the t∗-day cumulative readmission probability for this
patient i′ equals (1 − θ̂0i′ )H(t∗; i′), where

H t; i′( ) � ∑W
w�1

πw 1 − exp −
∫ t

0
hw u; i′( )du

( )( )
. (25)

The probability of being readmitted on a particular
day t equals

1 − θ̂0i′
( )

H t; i′( ) −H t − 1; i′( )( ).

6.1.3. Correcting theEndogeneity of LOSwith IVs. Patient
severity may be positively correlated with both LOS
and the dependent variables Yi because sicker pa-
tients tend to stay longer and are also more likely to
be readmitted. Thus, treating LOS as an exogenous
variable can lead to the incorrect conclusion that
longer LOS results in a higher readmission risk. To
address this issue, we follow the IV technique de-
veloped by Bartel et al. (2020), replacing log(LOSi)
with log( ˆLOSi) predicted by a linear regression on
exogenous featuresYe

i (which are included in the first-
and second-stage models) and additional IVs, IVi,
which only appear in stage 0, the preprocessing stage.
The linear regression on log(LOSi) follows:

log LOSi( ) � φYe
i + ζIVi . (26)

After obtaining the estimates for φ, we replace the
variable log(LOSi)with the predicted value log( ˆLOSi)
in Yi and estimate the parameters in the Cox curemodel.

In their econometric study, Bartel et al. (2020)
propose using admission day-of-week indicators as
the IV in the regression (26). The rationale is that
physicians prefer not to keep patients over the weekend.
Thus, a patient who would have stayed for four days
in the hospital may get discharged early if he or she
is admitted on Tuesday because of such operational
considerations. We adopt the same IV proposed by
Bartel et al. (2020) in our implementation. Our pre-
diction results show that this IV is able to help us
correct the estimation bias caused by endogeneity
and achieves satisfactory prediction performance on
various metrics such as area under the curve (AUC;
see more details in Section 6.2). We conclude with the
following remark.

Remark 6. We do not intend to claim causal relation-
ship or obtain causal inference for the effect of LOS on
readmission such as Bartel et al. (2020). The LOS can be
seen as a variable reflecting the aggregate effect of other
drivers for patient recovery in the hospital; we choose
LOS because it is the most intuitive variable for hospital

to control, and it directly affects the workload. Our
primary goal is to obtain a reasonably accurate pre-
diction on how individual patient readmission risk
evolves as a function of LOS, providing a necessary
input to our decision framework.

There is no theoretical guarantee when using IV in
conjunction with the nonlinear Cox survival model
except when the hazard rate function is linear in Yi
(MacKenzie et al. 2014, Zheng et al. 2017), although
there are reported empirical successes in correcting
bias with IVs (Atiyat 2011, Tian 2016). We tried using
the control function method for applying IV in non-
linear models (Petrin and Train 2010, Arıkan et al.
2017); theAUCisnot asgoodasdirectlyapplying the IV.
Wewould also like to point out that Bartel et al. (2020)
focus on nondeferrable conditions such as heart
attack patients. Hence, patients admitted on week-
days and weekends have similar conditions, and
their IV is likely to be valid. However, because our
model framework is not limited to a certain type of
patient, the exclusion criterion for the IV may no
longer hold. Although this IV helps to correct the
estimation bias in our prediction analysis and is
sufficient to generate an appropriate input for our
discharge optimization, readers should be cautious,
particularly when applying this IV to settings where
causality is important.
We also emphasize that it is not our goal in this

paper to fully explore all possible methods to achieve
the best prediction capability or fully address the
endogeneity issue. Rather, we aim to provide one
method that works well and use it to showcase in a
real hospital setting that our proof-of-concept is imple-
mentable, that is, using discharge optimization to
balance congestion versus readmission risk. To this
end, we show in Section 6.2 that the prediction tool
demonstrates reasonably accurate performance. More
important, in our trace-based counterfactual analysis
with hospital data (Section 7), we demonstrate that
combining the prediction tool and the discharge op-
timization, significant gains can be achieved in LOS,
net readmissions, and positive catch rate. Thus, we
believe that our prediction model serves its purpose in
achieving the primary goal of this paper. We leave to
future research further improvement of the prediction
model and using more advanced methods to address
the endogeneity issue in survival analysis.

6.2. Model Validation and Implementation
6.2.1. Data Description. The data set used to estimate
and validate our prediction model is from our partner
hospital in the state of Indiana, spanning January 2010
to September 2017. We exclude planned readmissions,
expired patients, patients under the age of 18 (includ-
ing newborns), and obstetric and gynecology patients.
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The final data set included n = 25,601 patients. Of the
200 available features, we exclude the binary pre-
dictors that are recorded for less than 5% of the
population and perform feature selections using
cross-validation. The final considered features in-
clude patient demographics (age, gender, race,
weight, and height), psychosocial data (e.g., ZIP code
and marital status), diagnostic information (e.g., In-
ternational Classification of Diseases code and major
diagnostic categories), postdischarge dispositions,
and indicators of secondary illnesses (e.g., depression,
diabetes, smoking habits). Also, dates of admission and
discharge for each patient visit are used to construct
possible IVs.

6.2.2. Model Selection and Validation. To train and
fine-tune our prediction model, we use a bootstrapping
algorithm. Our main performance metric for prediction
capability is the AUC. For bootstrapping, we use a
subsampling method to randomly sample patients from
the original data set 50 times, generating 50 different
training data sets. Each time, we sample m ≈ 0.623n
patients from the original data set without replace-
ment (De Bin et al. 2016). From each training data set i,
we estimate parametersΨi � {ξ,{πw},{λw},{kw},{βw}}.

We use the average estimates Ψ � (1/50)∑50
i�1 Ψi as

the final estimated parameters for a given model
configuration. We compare different configurations
and select the one that performs the best with respect
to AUC(Ψ), which is obtained by verifying the pre-
diction performance for all patients in the testing data
(i.e., the original data set as for the bootstrapping
method); see more details in Section A.3 of Online
Appendix A. In the model selection process, we also
consider AUC � (1/50)∑50

i�1 AUCi and several other
performance metrics reported later. Compared with
cross-validation typically used in the literature, boot-
strapping allows for both a larger training and test-
ing sample size, which is important in our setting
because the number of readmitted patients is small
compared with the total patient population (Austin
and Steyerberg 2017).

6.2.3. Prediction Performance. The estimated coeffi-
cients Ψ of selected main features for our final model
for implementation are reported in Section A.4 of

Online Appendix A. Table 1 compares a few per-
formance metrics on the prediction accuracy of our
final model. For the 90-day readmission risk,AUC(Ψ)
is 69.4% on the testing data set, and AUC is 68.2%
(±1.1% for the 95% confidence interval) from the 50
training data sets. Other performance metrics are
calculated in a similar way. AUC, accuracy, and F-
score are metrics for binary classifications, which we
report for two different cutoff times (30 and 90 days).
The C-statistic is a concordance metric for the con-
tinuous event time (Uno et al. 2011). It reflects the
proportion of pairs of subjects whose observed time-
to-failure event (possibly censored) and predicted
risk scores agree among all possible pairs. Thus, only
one number is reported. The AUC performance is
comparable with those reported in the literature
(Bayati et al. 2014, Min et al. 2019).
In addition, we show supporting evidence that this

prediction tool has improved our partner hospital’s
prediction metrics since the pilot implementation
(see details in Online Appendix F). More important,
given that the goal of this paper is to reduce read-
missions through our decision framework, instead
of simply predicting the readmissions, we demon-
strate in Section 7 that when we combine the pre-
diction tool and the discharge optimization frame-
work, significant gains can be achieved in LOS, net
readmissions, and positive catch rate.

7. Improving over Practice:
Counterfactual and Simulation Analysis

In this section, we develop a case study based on data
from our partner hospital. We begin with a coun-
terfactual analysis on the hospital’s historical prac-
tice to demonstrate howour dynamic algorithm could
have improved the hospital’s performance (see Sec-
tions 7.1 and 7.2). Our results demonstrate (1) Pareto
dominance of the dynamic policy over historical
practice, reducing both the readmission rate and
the proportion of early readmitters, (2) a high posi-
tive catch rate, properly identifying and intervening
on patients who were readmitted in the data, and
(3) occupancy smoothing, an unintended additional
benefit. This has served as an important step in our im-
plementation process to demonstrate to the hospital

Table 1. Predicting Capacity Performance of the Final Prediction Tool

Day

AUC Accuracy F-Score C-Statistic

Testing Training Testing Training Testing Training Testing Training

30 69.2% 66.2% ± 1.0% 87.8% 87.7% ± 0.1% 93.4% 93.4% ± 0.1% 67.0% 66.9% ± 0.6%
90 69.4% 68.2% ± 1.1% 78.3% 77.5% ± 0.5% 87.4% 86.8% ± 0.4%

Note. In each panel, the first number is gained on the testing data set, whereas the second number is averaged from the 50 testing data sets (the
number following the ± sign is the half-width of the 95% confidence interval).
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the potential value of our tool and to explain the logic
for when our recommendations differed from his-
torical practice. In Section 7.3, we develop a data-
driven discrete event simulation to generate insights
for the broader application of our method in a wide
range of hospitals through sensitivity analyses.

7.1. Trace-Driven Counterfactual Analysis Based on
Historical Data

To gain buy-in from management for a pilot imple-
mentation, we designed a counterfactual to com-
pare the dynamic policy (based on the dynamic al-
gorithm) with historical practice in our partner hospital.
To create a realistic comparison with historical dis-
charge behavior, we use a trace-driven approach
(Sherman and Browne 1973) in which the system
inputs are generated from observations in the data
instead of using parametric assumptions.We then use
an additive/subtractive counterfactual of readmission
events to evaluate the impact of changing historical
discharge decisions along several dimensions.

7.1.1. Avoiding/Adding Readmission Events. Our dy-
namic discharge policy may either extend or shorten
the actual LOS observed in the data. If a patient had a
readmission event in the data and our model rec-
ommends extending his or her LOS, we avoid the
readmission with a probability that is proportional to
the risk reduction from extending the LOS. Specifi-
cally, we calculate the ratio between the predicted risk
at our recommended discharge date versus the pre-
dicted risk at the actual discharge date. If a uni-
formly generated random variable exceeds this ratio,
we avoid the readmission. To explain this approach,
imagine that there is a random draw between 0% and
100% for each patient that produces the readmission
event. If the readmission risk is 20% for this patient
using the historical LOS and we observe a read-
mission event in the data, then we know the realized
outcome of the random draw lies anywhere between
0% and 20%. Suppose that by extending the LOS, we
reduce the readmission risk to 15%. Then we can
avoid this readmission event if the realized random
draw lies between 15% and 20% with a probability
5/20 � 25%. Similarly, if a patient did not have a
readmission event and our model recommends short-
ening his or her LOS, we generate a new readmission
event with a probability proportional to the risk in-
crease. We use Monte Carlo simulation with 50 rep-
lications to generate the sequence of the randomdraws
for each patient.

7.1.2. Personalized Risk Curves. In the implementa-
tion of the dynamic heuristic on real data, we in-
corporate personalized risk trajectories directly from
our prediction model, removing the reliance on

patient classes, as in the modeling framework in
Section 3. We follow the modified weak-dominance
rule, developed in Section 5.1.3, to rank all patients
who are currently in the hospital when a discharge
decision needs to be made.

7.1.3. Minimum LOS. To estimate the minimum LOS
Lm, we cluster patients into M � 3 classes with the
k-means method based on their predicted curves
(Figure 4(b)), roughly corresponding to the low-,
medium-, and high-risk groups. We further divide
each class into 10 subclasses and estimate the 10th
percentile as a proxy for the minimum LOS. The es-
timated minimum LOS is one day for all subclasses in
the low- and medium-risk groups and is two days for
all subclasses in the high-risk group.

7.1.4. Tuning Parameters. Estimating the cost pa-
rameter C is challenging. Also, in our data, there is no
reliable estimate of the capacity N. Instead, we use
these two as tuning parameters and plot the efficient
frontiers with respect to different performance met-
rics by varying N and the ratio between C and R. This
allows hospital managers to choose a parameter re-
gime to achieve their desired performance metrics.
During the actual implementation, we use a default
setting based on the management team’s feedback
on their preferred target point of the efficient fron-
tier. In the tool delivered to the hospital, we also
maintain an interactive tab where the efficient fron-
tier is shown, and hospital managers can change the
parameter settings to adjust their occupancy and
readmission targets (see more details in Section 8,
where we describe the pilot implementation).

7.2. Value of the Tool
7.2.1. Summary of Results. Figure 10 plots the read-
mission risk against the average LOS (which also
implies the average occupancy by Little’s law). In this
figure, the solid line corresponds to the performance
of dynamic policies from a series of experiments
where we vary R from 0.01 to 120, with N � 40 and
C � 1; the dotted line corresponds to the performance
of the hospital’s historical practice. We report three
types of readmission risk in each of the subplots:
• Realized readmissions. This is the historical number

of readmissions (adjusted by the number of avoided or
added readmissions for the dynamic policy) divided
by the total number of patients.
• Predicted readmissions. To account for other sample

paths than the realized one (in the data), we compare
the predicted readmission risk using the historical
versus the dynamic policies.
• High and medium risk. We compare the predicted

readmission risk for the historical versus dynamic
policies for only high- and medium-risk patients.
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From the figure, the dynamic policy can either reduce
the readmission riskwhilemaintaining a similar average
LOS or maintain the same readmission risk with shorter
LOS (lower occupancy); that is, our dynamic heuristic
exhibits Pareto dominance over the historical one. For
example, the dynamic policy can significantly reduce
readmission risk for medium- and high-risk groups
(from 32% to 28%) when extending the LOS slightly
(from 3.33 to 3.55 days). Table 2 reports the average
LOS and the average added and avoided number of
readmissions, alongwith the 95% confidence interval.

7.2.2. Positive Catch. A positive catch is defined as
extending the LOS for at least one day for a patient
who was actually readmitted in the historical data.
This performance metric measures the ability of our
tool to properly identify and intervene on at-risk
patients. It is also appealing to our industry partner
(Lean Care Solutions) because they find that such
metrics could be easily explained to hospital man-
agement. Using a policy that maintains a similar
average LOS as the historical one, we have a positive
catch rate above 50%. Positive catch rates for other
ratios of R and C are shown in Table 2.

7.2.3. Impact on Readmission Timing. Under the av-
erage LOS of 3.55 days (R/C � 3), of the total number
of avoided readmissions, approximately 25% of them
were readmissions within 14 days, and 40% of them

were within 30 days. Given that 14 and 30 days
correspond to 15% and 33% of the total readmission
window (90 days), we can see that our recommended
discharge policies are able to reduce more early read-
mitters: this is beneficial to hospitals because the early
readmitters usually require more intensive care during
their readmission visits. By further extending the LOS,
the percentage of avoided readmissions within 14 and
30 days can be increased to up to 30% and 45%, re-
spectively. These observations are consistent with our
conjecture that increasing LOS has a more significant
effect on reducing early readmits (Figure 4(c)).
We also perform a similar additive/subtractive

counterfactual to examine whether extending LOS
would change the timing of readmissions for patients
who received the extension intervention but did not
avoid the readmission (from the randomdraw). To do
so, we use the conditional probability of readmission
timing before day t, conditioning on the event that the
patient is readmitted. Under the average LOS of
3.55 days (R/C � 3), 3% patients were shifted from
before t � 14 days to after 14 days, in addition to the
avoided readmissions.

7.2.4. Occupancy Smoothing. Harrison et al. (2005)
hypothesized that discharge policies could be effec-
tive in smoothing hospital occupancies, which has
numerous benefits beyond the objectives of our study,
such as reducing cancellations of elective surgery,

Figure 8. Efficiency Frontier

(a) (b) (c)

Notes. We setN � 40 andC � 1 and changeR from 0.01 to 120 to get the solid line in each plot (using the dynamic heuristic). The dot corresponds
to the performance of the historical discharge policy. The 95% confidence intervals are tight, and we omit them in the plots. Plot (a) shows the
realized readmission; plot (b) shows the predicted readmission; plot (c) shows the predicted readmission for high- and medium-risk patients.

Table 2. Summary of Statistics from Dynamic Policies under Different Cost Parameters

R/C 0.01 0.1 1 3 40 120

Average LOS 2.67 3.05 3.22 3.55 4.61 7.20
No. readmission avoided 398 ± 4.7 514 ± 5.6 554 ± 5.5 658 ± 6.0 935 ± 6.8 1,481 ± 8.7
No. readmission added 513 ± 5.5 379 ± 5.5 333 ± 4.6 258 ± 4.3 127 ± 2.6 24 ± 1.2
Positive catch 37% 45% 49% 54% 68% 84%

Note. Each number following the ± sign in the second and third rows denotes the half-width of the 95%
confidence interval of the corresponding entry.
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boarding time in the emergency department, off-
servicing of patients, and stress on hospital staff,
among others (Kc and Terwiesch 2017, Dai and Shi
2019). Although occupancy smoothing is not explicitly
incorporated in our objective function of the MDP,
Figure 9 shows that the dynamic policy does produce
a much smoother occupancy curve than the historical
one, an unintended benefit. The peakedness of the
occupancy, defined as the sum of squared differences
between the daily and overall mean occupancy
(normalized by the overallmean), decreases from 1.44
under the historical practice to less than 0.25 under
the dynamic policy for settings in Figure 9.

7.3. Broader Insights for Different Hospital
Environments and Operational Characteristics

In this section, we develop a high-fidelity, data-driven
discrete event simulation to study the operational
characteristics of hospitals that influence the efficacy of
the dynamic discharge policy, where we vary hospital
unit size and utilization, shape of the risk curves, and
variability in the arrival process. We summarize gener-
alizable insights into which types of hospitals benefit
most from the dynamic policy through comparisonwith
the static threshold policy and an empirical policy that
mimics historical behavior. The rationale behind these
insights is explained through two operating regimes:
occupancy-driven versus quality-driven regimes,
which we detail in Online Appendix E.

7.3.1. Simulation Design and Policy Description. The
simulation platform is similar to that in Section 7.1,
except that we assume that the patient arrivals follow
a time-nonhomogeneous Poisson process, with the
arrival rates depending on both time of day and day of
week. The exogenous daily arrival rate is estimated to
be Λ � 6.5 patients per day. For each arriving patient,

we randomly sample his or her risk trajectory from
the predicted risk curves of all patients in the data set.
We compare the performance of the dynamic policy

against two benchmark policies: (1) an empirical
policy based on historical discharge behavior and
(2) theoptimized static thresholdpolicy fromSection 3.3.
For these two policies, we group patients into M � 3
classes as in Figure 4(b), roughly corresponding to
the low-, medium-, and high-risk groups. The em-
pirical policy is similar to the static policy, where we
estimate from data a fixed set of discharge risk thresh-
olds: 10%, 20%, and 35% for the low-, medium-, and
high-risk patients, respectively. The corresponding
thresholds of LOS for each class are 3, 4, and 5 days;
the average LOS of 3.69 days is close to the historical
average (3.35 days).
For the baseline, we select the cost parameters

C � 1,R � 3, and capacityN � 40, underwhich setting
the empirical policy has the smallest performance gap
with the static and dynamic policies. In this way, we
give the empirical policy the benefit of the doubt by
assuming that the hospital is aiming to optimize
under the given system conditions.

7.3.2. Main Insights for Hospital Operating Characteristics.
Figure 10 plots the performance improvement from
the dynamic and static policies over the empirical policy
(i.e., performance gap) under a variety of settings.

7.3.2.1. Size and Utilization. Figure 10, (a)–(c), shows
the performance under different utilizationswhenwe
increase the system size (reflected by the higher ar-
rival rate while maintaining the same utilization). The
performance of both dynamic and static policies
exhibits a U-shaped pattern as a function of utiliza-
tion, with the largest gains occurring at low and high
occupancies. The more interesting finding is that the

Figure 9. Daily Occupancy Level on Different Days of a Week

Notes. We set C � 1 andN � 40 and change R to get different average LOSs under the dynamic policy (reported in the title of each subplot). The
historical average LOS is 3.35 days.
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gap between the static and dynamic policies con-
verges as system utilization increases, and the gap
converges faster as hospital size increases.We explain
this phenomenon through the two operating regimes
identified in Online Appendix E. Thus, in smaller
hospitals or single wards and in hospitals with lower
utilizations (common in community hospitals), the
dynamic policy is needed to obtain the greatest

benefit. In larger and/or more highly used hospitals,
such as urban and teaching hospitals, the simpler
static policy may be sufficient. This insight may ex-
plain why the dynamic policy works well in our
partner hospital, which is a small community hospital.

7.3.2.2. Risk Curves. Figure 10, (d)–(f), shows the
performance improvement for different shapes of the

Figure 10. Performance Gap under Different Sensitivity Analysis Settings

(a) (b) (c)

(d) (e) (i)

(g) (h) (i)

Notes. In the baseline, we set Λ � 6.52, N � 40, C � 1, and R � 3. To measure the utilization, we calculate the offered load using the empirical
policy because it does not react directly to occupancy levels. We then adjust the arrival rates to achieve different levels of utilization.

Shi et al.: Balancing Inpatient Congestion vs. Readmission Risk at Discharge
Operations Research, Articles in Advance, pp. 1–24, © 2021 INFORMS 21



risk curve, moving from flatter to steeper slopes. As
the slope increases, the gap between the dynamic
and static policies increases significantly. The per-
formance of the dynamic policy always improves
as the slope increases, whereas the static policy does
not exhibit this monotone behavior. Linking this to
practice, the dynamic policy is more useful when pa-
tients recover faster. An example of this environment
could be specialized elective surgery hospitals or
wards because these patients often have a more rapid
recovery process than patients with complicated medi-
cal conditions.

7.3.2.3. Day-of-Week Variability. Figure 10, (g)–(i),
shows the performance improvement when the ar-
rival process exhibits an increasing day-of-week ar-
rival variability. As the variability in the arrival pro-
cess increases, the gap between dynamic and static
increases significantly. The dynamic policy always
performs better as variability increases, whereas the
static policy does not necessarily improve. Hence,
the dynamic policy is increasingly valuable along
multiple dimensions as the variability in the arrival
process increases, providing both better performance
and greater occupancy smoothing. This again indi-
cates that the dynamic policy may be more useful in
elective surgical hospitals or wards because surgical
scheduling generates much of the variability in the
arrival process.

8. Conclusion
Through constant interactionwithmultiple doctors, case
management, and hospital executives, especially chief
medical officers, from community hospitals to academic
hospitals, we have identified the need for discharge
optimization as a valuable addition to the readmissions
reduction offering of our tool. —Chief executive officer
of Lean Care Solutions

In this paper, we develop a practical tool that in-
tegrates personalized readmission risk prediction into
inpatient discharge planning. We test and implement
this tool through collaborations with a data analytics
company and a local partner hospital. Based on ex-
tensive counterfactual and simulation analyses, we
demonstrate the value of this tool compared with the
hospital’s historical discharge behavior and identify
hospital characteristics that would benefit the most
from our discharge optimization. We show that by
increasing the average LOS moderately, the read-
mission risk can be reduced significantly; for exam-
ple, when the average LOS increases from 3.33 days
under the historical practice to 3.55 days under the
dynamic policy, the corresponding readmission risk
for medium- and high-risk groups decreases from
32% to 28%. The purpose of our tool is not to promote
early discharge (unless necessary when system is

highly congested); rather, it provides analytical sup-
port for a hospital to balance the benefits of shortening
or extending LOS.We concludewith a brief discussion
of our ongoing implementation efforts, including in-
troduction of the user interface, integration into cur-
rent workflow, and future research opportunities.

8.1. Implementation Efforts
8.1.1. User Interface. Figure 2(a) shows the discharge
tool’s user interface. On the left side of the predis-
charge module, every inpatient is represented by a
rectangle, which shows admission date and current
LOS. These rectangles are ranked based on the ranking
criterion we developed earlier in this main paper. In
addition to having the patients ranked in terms of
readiness for discharge, the boxes are displayed in
three colors: green, yellow, and red. Green indicates
that the patient can be discharged under a conservative
setting that puts more focus on the readmission cost.
Yellow indicates that the patient can be discharged
under the baseline cost setting; see more discussion
on cost choices below. Red indicates that the patient
should not be discharged except in extreme cases (e.g.,
mass casualty events).
Clicking on one of the patient rectangles reveals

additional information, such as principal diagnostic
and relevant psychosocial data in the center panel. By
clicking on “Submit” in the lower right-hand corner,
a window pops up with the discharge risk versus
LOS curve shown in Figure 2(b). The vertical bars
show the current LOS and the recommended dis-
charge date from our optimization tool. Enlarged
figures are available in Online Appendix F. At the
hospital’s request, the tool alsoprovides apostdischarge
tab on prediction of the time to readmission when dis-
charge is initiated (see a snapshot inOnlineAppendix F).

8.1.2. Integration into Workflow. The discharge opti-
mization tool is intended to be used daily during the
timewhen discharges are being evaluated and processed,
typically before morning rounds. When considering the
discharge, the staff will check the tool for a patient’s
discharge suitability/ranking and the other analytics
features described previously that support the dis-
charge decision. We emphasize that this tool is
intended for decision support and can adapt to de-
viation from recommendations based on clinicians’
assessment and medical judgment. These deviations
are logged in the tool, where clinicians can also
provide notes about their discharge decision. The
dynamic data gathered provide live feedback to our
algorithms, which can help to make further adjust-
ments for the decision support. In the implementa-
tion, the discharge recommendations are provided
based on a default setting for the parameters C and R,
which were chosen by soliciting the management
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team’s input on their target LOS/readmission rate
combination. Two sets of R/C ratios are selected to
produce the color codes mentioned previously: R/C � 3
as the baseline version where the resulting average
LOS (from our simulation analysis) roughly matches
the historical average of 3.33 days and R/C � 40 as
a more conservative setting to match the hospital’s
target to reduce its readmission rate below 20%. In
addition, we provide a pop-up box in the tool where a
gatekeeper can change the default setting to allow for
dynamic adjustment of management goals in the
event, for example, that management has additional
information or strategy that would require a tem-
porary or more permanent change in policy. In this
pop-up box, we demonstrate a tradeoff curve, where
we vary the tuning parameters and demonstrate the
tradeoff between average LOS (occupancy) and av-
erage readmission rate.

More details of the implementation are documented
in Online Appendix F. Thus far, the pilot has beenwell
received and is considered a success by our industry
partners. Moving forward, Lean Care Solutions’ chief
executive officer indicates that “[Our tool] has re-
ceived very positive interest from another leading
academic hospital on the east coast, praising the
applicability of the real world decisions that need to
be made on the ground and the simplicity of infor-
mation that the tool communicates to the users. We
are looking to roll out this module after more testing
as part of the Readmissions Reduction Tool offering
to all our current and future clients.”

8.2. Future Research
This paper can be extended in a few directions.We are
working with the hospitals to explore the possibility
of collecting more time-varying covariates that may
better reflect patient condition changes in the hos-
pital, which could help improve both the risk pre-
diction and discharge decision optimization. Newly
emerging machine learning tools such as deep neural
networks could further improve the accuracy of the
risk prediction. There are significant avenues of fu-
ture work in developing these tools to improve the
prediction performance and quantifying how much
such improvement can increase the value of our
discharge decision support. In addition, we focus on
readmission risk as the main outcomemetric, whereas
future work could extend our framework to other
patient outcomes. From the analytical side, we pro-
pose aweak-dominance ranking criterionwhen strong
dominance is not met but not as a main focus of this
paper. A more thorough study could take a deeper
look into this setting along with establishing possible
performance bounds, which likely would require new
methodology and approximation methods. In addi-
tion, future works may consider jointly optimizing

discharge decisions along with other decisions such as
admission control or patient diversion (including off-
service placements) to further reduceward congestion.
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